

python-ucam-webauth documentation

Contents:

	Quickstart
	Using the flask decorator

	Requiring all flask requests be authenticated

	Manual request building and response parsing
	Warning

	Integrating with existing authentication or session management
	Warning

	See also

	Security
	Checking response values

	Using params as a token

	Signing keys

	Misc
	Response URL for “cancels”

	python module documentation
	ucam_webauth
	flask_glue

	ucam_webauth.raven
	flask_glue

	demoserver

Links

	source on github [https://github.com/danielrichman/python-ucam-webauth]

	documentation [https://python-ucam-webauth.readthedocs.io/en/latest/]

	pypi page [https://pypi.python.org/pypi/python-ucam-webauth]

	Raven documentation [https://raven.cam.ac.uk/project/]

	WAA2WLS protocol [https://raven.cam.ac.uk/project/waa2wls-protocol.txt]

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Using the flask decorator

import flask
from flask import Flask
from ucam_webauth.raven.flask_glue import AuthDecorator

Werkzeug deduces the hostname from the 'Host' or
'X-Forwarded-Host' headers, so we need a whitelist
class R(flask.Request):
 trusted_hosts = {'your-domain.com', 'www.your-domain.com'}

app = Flask(__name__)
app.request_class = R
app.secret_key = "a secret key"
auth_decorator = AuthDecorator(desc="My website")

@app.route("/some_url")
@auth_decorator
def my_view():
 return "You are " + auth_decorator.principal

if __name__ == '__main__':
 app.run()

Requiring all flask requests be authenticated

import flask
from flask import Flask
from ucam_webauth.raven.flask_glue import AuthDecorator

Werkzeug deduces the hostname from the 'Host' or
'X-Forwarded-Host' headers, so we need a whitelist
class R(flask.Request):
 trusted_hosts = {'your-domain.com', 'www.your-domain.com'}

app = Flask(__name__)
app.request_class = R
app.secret_key = "a secret key"
auth_decorator = AuthDecorator()

app.before_request(auth_decorator.before_request)

@app.route("/")
def home():
 return "You are " + auth_decorator.principal

if __name__ == '__main__':
 app.run()

Manual request building and response parsing

To create requests:

>>> from ucam_webauth.raven import Request, Response
>>> r = Request(url="http://host/response/path", desc="My website")
>>> print str(r)
https://raven.cam.ac.uk/auth/authenticate.html?url=http%3A%2F%2Fhost%2Fresponse%2Fpath&ver=3&desc=My+website

And parse responses:

>>> r = Response("3!200!!20130705T150000Z!1373000000-00000-00!"
 "http%3A%2F%2Fhost%2Fpath!djr61!current!pwd!!"
 "36000!!2!signature-omitted")
>>> r.success
True
>>> r.principal
"djr61"
>>> r.ptags
set(["current"])

Warning

You must check various properties of received responses.
See Checking response values

Integrating with existing authentication or session management

from ucam_webauth import raven
from datetime import datetime
from flask import Flask, session, flash, url_for, redirect, abort, request

app = Flask(__name__)
app.secret_key = "a secret key"

@app.route("/")
def home():
 return "Log in".format(url_for('login'))

@app.route("/login")
def login():
 u = url_for("response", _external=True)
 r = raven.Request(url=u)
 return redirect(str(r))

@app.route("/response")
def response():
 r = raven.Response(request.args["WLS-Response"])

 # checking url, issue, iact and aauth is very important!
 # Werkzeug deduces the hostname from the 'Host' or
 # 'X-Forwarded-Host' headers, so we need a whitelist
 request.trusted_hosts = {'www.your-domain.com', 'your-domain.com'}
 if r.url != request.base_url:
 print "Bad url"
 abort(400)

 issue_delta = (datetime.utcnow() - r.issue).total_seconds()
 if not -5 < issue_delta < 15:
 print "Bad issue"
 abort(403)

 if r.success:
 # a no-op here, but important if you set iact or aauth
 if not r.check_iact_aauth(None, None):
 print "check_iact_aauth failed"
 abort(403)

 session["user"] = r.principal

 return redirect(url_for("secrets"))
 else:
 return redirect(url_for("home"))

@app.route("/secrets")
def secrets():
 if session.get("user", None) is None:
 abort(401)
 return "You are {0}".format(session["user"])

if __name__ == "__main__":
 app.run(debug=True)

Warning

You must check various properties of received responses.
See Checking response values

See also

The included simple_demo flask app [https://github.com/danielrichman/python-ucam-webauth/tree/master/simple_demo]
serves as a far more comprehensive example, including:

	decorator usage

	integration with existing authentication (i.e., user is offered to
log in via Raven or some other method)

	full Raven logout

	message flashing

Security

Checking response values

You must check the url, issue, auth and sso attributes of the
response:

	check that url matches the current URL being requested / is what you
expect.

Not checking url will allow another evil website administrator to replay
responses produced by Raven log-ins to her website to yours, thereby
impersonating someone else.
(Using params as a token (below) doesn’t help, since the attacker can
obtain a matching (cookie, params) pair from you first, and then ask
the victim to authenticate with params set to that value.)

Some frameworks, notably Werkzeug, deduce the current hostname from
the Host or X-Forwarded-Host headers (with the latter taking
precedence).

See also

werkzeug#609 [https://github.com/mitsuhiko/werkzeug/issues/609] and
issue 5 [https://github.com/danielrichman/python-ucam-webauth/issues/5]

This technique may be used to whitelist domains in Flask:

class R(flask.Request):
 trusted_hosts = {'www.danielrichman.co.uk'}
app.request_class = R

Alternatively, you could sanitise Host and X-Forwarded-Host in your
web-server.

If you might have query parameters in your url, you need to take care to
handle negative respones from the WLS. See Response URL for “cancels”.

	check issue is within an acceptable range of now

… lest someone replay an old response to log in again

	check auth and sso match iact and aauth

see ucam_webauth.Response.check_iact_aauth()

Not checking iact/aauth will allow those restrictions to be bypassed
by crafting a custom request to the WLS.

Using params as a token

You might like to set a random nonce in the Request’s params, save
a hashed (with secret salt) or signed copy in a cookie, and check that they
match in the Response.

This is not a substitute for any of the checks above, but does make the
WLS-Response values in your web server access logs useless.

ucam_webauth.flask_glue.AuthDecorator does this.

Signing keys

The keys used by Raven to sign responses are included with
python-ucam-webauth. I took care in retrieving them, however you should trust
neither me nor the method by which you installed this package.
You should check that the copies of the certificates you have are
correct / match the files at the links below (and audit the code you’ve
just installed, I guess).

	pubkey2 from https://raven.cam.ac.uk/project/keys/

	pubkey901 from https://raven.cam.ac.uk/project/keys/demo_server/

Misc

Response URL for “cancels”

The short story is that when the WLS wants to send a “response” to the WAA, it
takes the URL you provided in the request, adds a WLS-Response query
parameter, and redirects the client to that URL.

Happily, it guarantees that this will be done by appending
(?|&)WLS-Response=… to the URL (which means that this process is easy to
undo, which is a necessary part of Checking response values).

However: while in version 3 it preserves any query parameters that were already
in the request URL, in version 1 of the protocol it will not: that is, it
deletes the query component before appending ?WLS-Response…. Furthermore,
while the current version of the WLS appears to reply with version 3 upon
success, if you click “cancel” then it will use version 1, presumably because
of reasons.

The WLS does include in its response a copy of some of the request parameters,
in particular, the return URL. It is possible to extract this from the
response, and after inspecting WLS-Response, perform a redirect to it,
recovering the deleted query parameters. The flask_glue does exactly this,
and so hopefully you should not suffer problems on account of this behaviour.

Note that if you for some reason had the requirement that requests to a certain
page need only be Raven authenticated if a certain query parameter is present,
then something like this would not work correctly:

def my_before_request():
 if "special" in request.args:
 return flask_glue.before_request()
 else:
 return None

… since if a user clicks Cancel, the special query parameter would not be
set, so the before_request function would run, and the response from the WLS
would not be handled. Instead, something like this would be necessary:

def my_before_request():
 if "special" in request.args or "WLS-Response" in request.args:
 return flask_glue.before_request()
 else:
 return None

If you are not using the flask_glue, I suggest where possible just avoiding
having significant query parameters on the URL that you use to perform Raven
authentication, and then simply check that request.base_url matches the URL
in the signed response. Otherwise, have a look at the implementation of
flask_glue for inspiration.

python module documentation

	ucam_webauth
	flask_glue

	ucam_webauth.raven
	flask_glue

	demoserver

ucam_webauth

The ucam_webauth module implements version 3 of the WAA to WLS protocol.

It is not set up to talk to a specific WAA (i.e., Raven), and subclassing
this modules’ classes is required to make it functional. In particular, you
probably want to use ucam_webauth.raven.

The protocol is implemented as defined at
https://raven.cam.ac.uk/project/waa2wls-protocol.txt
at the time of writing (though that URL may have since been replaced with a
newer version). A copy of wawa2wls-protocol.txt is included with python-raven,
and more information can be found at https://raven.cam.ac.uk/project/.

	WAA

	A WAA is a “Web Application Agent”
(i.e., an application using this module)

	WLS

	The “Web Login Service” (i.e., Raven)

	
ucam_webauth.ATYPE_PWD

	
ucam_webauth.STATUS_SUCCESS

	
ucam_webauth.STATUS_CANCELLED

	
ucam_webauth.STATUS_NOATYPES

	
ucam_webauth.STATUS_UNSUPPORTED_VERSION

	
ucam_webauth.STATUS_BAD_REQUEST

	
ucam_webauth.STATUS_INTERACTION_REQUIRED

	
ucam_webauth.STATUS_WAA_NOT_AUTHORISED

	
ucam_webauth.STATUS_AUTHENTICATION_DECLINED

	AuthenticationType and Status instances used as constants
in requests and responses

They compare equal with their corresponding integers (for status codes)
and strings (for atypes).

	
ucam_webauth.STATUS_CODES

	A dict mapping status.code (i.e., the integer status code) to the relevant
status object

	
class ucam_webauth.AuthenticationType(name, description)

	An Authentication Type

This class exists to create the ucam_webauth.AUTH_PWD constant.

	
name

	the name by which Ucam-webauth knows it

	
description

	a sentence describing it

Note that comparing an AuthenticationType object with a
str (or another AuthenticationType object) will compare
the name attribute only. Further, str(atype) == atype.name.

	
class ucam_webauth.Status(code, name, description)

	A WLS response Status

	
code

	a (three digit) integer

	
name

	short name for the status

	
description

	description: a sentence describing the status

Note that comparing a Status object with an integer
(or another Status object) will compare the code
attribute only. Further, int(status_object) == status_object.code

	
class ucam_webauth.Request(url, desc=None, aauth=None, iact=None, msg=None, params=None, fail=None, encode_strings=True)

	A Request to the WLS

	Parameters

	
	url (str) – a fully qualified URL; the user will be returned here
(along with the Response as a query parameter) afterwards

	desc (str) – optional description of the resource/website
(encoding - see below)

	aauth (set of AuthenticationType objects) – optional set of permissible authentication types;
we require the user to use one of them
(if empty, the WLS uses its default set)

	iact (True, False or None) – interaction required, forbidden or don’t care (respectively)

	msg (str) – optional message explaining why authentication is required
(encoding - see below)

	params (str) – data, which is returned unaltered in the Response

	fail (bool) – if True, and authentication fails, the WLS must show an error
message and not redirect back to the WAA

All parameters are available as attributes as of Request object,
once created.

	
iact

	

	True: the user must re-authenticate

	False: no interaction with the user is permitted
(the request will only succeed if the user’s identity can be
returned without interacting at all)

	None (default): interacts if required

	
msg

	
desc

	The ‘msg’ and ‘desc’ parameters are restricted to printable ASCII
characters (0x20 - 0x7e). The WLS will convert ‘<’ and ‘>’ to ‘<’
and ‘>’ before using either string in HTML, preventing the
inclusion of markup. However, it does not touch ‘&’, so HTML character
and numeric entities may be used to represent other characters.

If encode_strings is True, & will be escaped to &,
and non-ascii characters in msg and desc will be converted to
their numeric entities.

Otherwise, it is up to you to encode your strings. An error will be
raised if msg or desc contain non-printable-ASCII characters.

	
params

	The ucam-webauth protocol does not specify any restrictions on the
content of params. However, awful things may happen if you put
arbitrary binary data in here. The Raven server appears to interpret
non-ascii contents as latin-1, turn them into html entities in order
to put them in a hidden HTML input element, then turn them back into
(hopefully) the same binary data to be returned in the Response. As a
result it outright rejects ‘params’ containing bytes below 0x20, and
has the potential to go horribly wrong and land you in encoding hell.

Basically, you probably want to base64 params before giving it to a
Request object.

	
__str__(self)

	Evaluating str(request_object) gives a query string, excluding
the ?

	
class ucam_webauth.Response(string)

	A Response from the WLS

Constructed by parsing string, the ‘encoded response string’ from the
WLS.

The Response class has the following attributes, which must be set by
subclassing it (see raven.Response):

	
old_version_ptags

	A set of str objects

The ptags attribute is set to this value if the version of the
response is less than 3

	
keys

	A dict mapping key identifiers (kid) to a RSA public key
(which must be an object with a verify(digest, signature)
method that returns a bool)

A Response object has the following attributes:

Always present

	
ver

	response protocol version
(int)

	
status

	response status
(Status constant)

	
msg

	a text message describing the status of the authentication
request, suitable for display to the end-user
(str)

	
issue

	response creation time
(datetime, timezone naive - the values are UTC)

	
id

	an “identifier” for the response.
(int)

The tuple (issue, id) is guaranteed to be unique

	
url

	the value of url supplied in the request, or equivalently,
the URL to which this response was delivered
(str)

	
success

	shorthand for status == STATUS_SUCCESS
(bool)

	
params

	a copy of params from the request
(str)

	
signed

	whether the signature was present and has been verified
(bool)

Note that a present but invalid signature will produce an exception
when parsed.

Present if authentication was successful, otherwise ``None``:

	
principal:

	the authenticated identity of the user
(str)

	
ptags

	attributes or properties of the principal
(frozenset of str objects)

	
auth

	method of authentication used
(AuthenticationType constant, or None)

If authentication was not established by interaction (i.e., the
client was already authenticated) then auth is None

	
sso

	previous successful authentication types used
(frozenset of AuthenticationType constants)

sso will not be the empty set if auth is None

Optional if authentication was successful, otherwise ``None``:

	
life

	remaining life of the user’s WLS session
(int, in seconds)

Required if signed is True:

	
kid

	identifies the RSA key used to sign the request
(str)

	
check_iact_aauth(iact, aauth)

	Check that the WLS honoured iact, aauth

This method checks that self.auth, self.sso are consistent with
the iact and aauth, which should be the same as the values used
to construct the Request.

flask_glue

This module provides glue to make using python-raven with Flask easy

	
class ucam_webauth.flask_glue.AuthDecorator(desc=None, aauth=None, iact=None, msg=None, max_life=7200, use_wls_life=False, inactive_timeout=None, issue_bounds=(15, 5), require_principal=None, require_ptags=frozenset([u'current']), can_trust_request_host=False)

	An instance of this class decorates views to add authentication.

To use it, you’ll need to subclass it and set response_class,
request_class and logout_url (see raven.flask_glue.AuthDecorator).
Then:

auth_decorator = AuthDecorator() # settings, e.g., desc="..." go here

@app.route("/some_url")
@auth_decorator
def my_view():
 return "You are " + auth_decorator.principal

Or to require users be authenticated for all views:

app.before_request(auth_decorator.before_request)

Note that since it uses flask.session, you’ll need to set
app.secret_key.

We need to be able to reliably determine the hostname of the current
website. This is retrieved from flask.Request.url.
By default, Werkzeug will respect the value of a X-Forwarded-Host
header, which means that a man-in-the-middle can have someone authenticate
to their website, and forward the response from the WLS on to you.
You must either set flask.Request.trusted_hosts, for example
like so:

class R(flask.Request):
 trusted_hosts = {'www.danielrichman.co.uk'}
app.request_class = R

… or sanitise both the Host header and the X-Forwarded-Host
header in your web-server. If you choose the second option, set
can_trust_request_host.

This tries to emulate the feel of applying mod_ucam_webauth to a file.

The decorator wraps the view in a function that calls
before_request() first, calling the original view function if it
does not return a redirect or abort.

You may wish to catch the 401 and 403 aborts with app.errorhandler.

The principal, their ptags, the issue and
life from the WLS are available as attributes of the
AuthDecorator object
(magic properties that retrieve the current values from flask.session).
Further, the attributes expires and expires_all give
information on when the ucam_webauth session will expire.

For the desc, aauth, iact, msg parameters, see
ucam_webauth.Request.

Note that the max_life, use_wls_life and inactive_timeout parameters
deal with the ucam_webauth session only; they only affect
flask.session["_ucam_webauth"]. Flask’s session expiry, cookie
lifetimes, etc. are independent.

	Parameters

	
	max_life (int (seconds) or None) – upper bound on how long a successful authentication can
last before it expires and the user must reauthenticate

	use_wls_life (bool) – should we lower the life of the session to the life
reported by the WLS, if it is less than max_life?

	inactive_timeout (int (seconds) or None) – expire the session if no request is processed
via this decorator in inactive_timeout seconds

	issue_bounds (tuple: (int, int) (seconds)) – a tuple, (lower, upper) - how close the issue
(datetime that the WLS says the authentication
happened at) must be to now
(i.e., require now - lower < issue < now + upper;
this is a combination of two settings found in
mod_ucam_webauth: clock skew and response timeout,
issue_bounds=(clock_skew + response_timeout,
clock_skew) is equivalent)

	require_principal (set of str, or None) – require the principal to be in the set

	require_ptags (set of str, or None) – require the ptags to contain any string in
require_ptags (i.e., non empty intersection)

	can_trust_request_host (bool) – Can we trust the hostname in
request.url?
(see Checking response values)

More complex customisation is possible:

	override check_authorised() to do more complex
checking than require_principal, require_ptags
(note that this replaces checking require_principal, require_ptags)

	override session_new()

The AuthDecorator only touches
flask.session["_ucam_webauth"].
If you’ve saved other (important) things to the session object, you
may want to clear them out when the state changes.

You can do this by subclassing and overriding session_new. It is called
whenever a response is received from the WLS, except if the response
is a successful re-authentication after session expiry, with the same
principal and ptags as before.

To log the user out, call logout(), which will clear the session
state. Further, logout() returns a flask.redirect() to the
Raven logout page. Be aware that the default flask session handlers are
susceptible to replay attacks.

POST requests:
Since it will redirect to the WLS and back, the auth decorator will
discard any POST data in the process. You may wish to either work
around this (by subclassing and saving it somewhere before redirecting)
or ensure that when it returns (with a GET request) to the URL, a
sensible page is displayed (the form, or an error message).

	
__call__(view_function)

	Wraps view_function with the auth decorator

(AuthDecorator objects are callable so that they can be used
as function decorators.)

Calling it returns a ‘wrapper’ view function that calls
request() first.

	
principal

	The current principal, or None

	
ptags

	The current ptags, or None

	
issue

	When the last WLS response was issued

issue is converted to a unix timestamp (int), rather than
the datetime object used by ucam_webauth.Response.
(issue is None if there is no current session.)

	
life

	life of the last WLS response (int seconds), or None

	
last

	Time (int unix timestamp) of the last decorated request

	
expires

	When (int unix timestamp) the current auth. will expire

	
expires_all

	A list of all things that could cause the current auth. to expire

A list of (str, int unix timestamp) tuples;
(reason, when).

reason will be one of “config max life”, “wls life” or “inactive”.

	
logout()

	Clear the auth., and return a redirect to the WLS’ logout page

	
before_request()

	The “main” method

	checks if there is a response from the WLS

	checks if the current URL matches that which the WLS said it
redirected to (avoid an evil admin of another site replaying
successful authentications)

	checks if flask.session is empty - if so, then we deduce that
the user has cookies disabled, and must abort immediately with
403 Forbidden, or we will start a redirect loop

	checks if params matches the token we set (and saved in
flask.session) when redirecting to Raven

	checks if the authentication method used is permitted by aauth
and user-interaction respected iact - if not, abort with
400 Bad Request

	updates the state with the response: updating the principal,
ptags and issue information if it was a success, or
clearing them (but setting a flag - see below: 401 Authentication
Required will be thrown after redirect) if it was a failure

	returns a redirect that removes WLS-Response from
request.args

	checks if the “response was an authentication failure” flag is set
in flask.session - if so, clears the flag and aborts with
401 Authentication Required

	checks to see if we are authenticated (and the session hasn’t
expired)

	if not, returns a redirect that will sends the user to the
WLS to authenticate

	checks to see if the principal / ptags are permitted

	if not, aborts with a 403 Forbidden

	updates the ‘last used’ time in the state (to implement
inactive_timeout)

Returns None, if the request should proceed to the actual
view function.

	
check_authorised(principal, ptags)

	Check if an authenticated user is authorised.

The default implementation requires the principal to be in
the whitelist require_principal (if it is not None, in
which case any principal is allowed) and the intersection of
require_ptags and ptags to be non-empty (unless
require_ptags is None, in which case any ptags
(or no ptags at all) is permitted).

Note that the default value of require_ptags in
raven.flask_glue.AuthDecorator is {"current"}.

	
session_new()

	Called when a new user authenticates

More specifically, when principal or ptags changes.

ucam_webauth.raven

Raven

The Raven module subclasses ucam_webauth.Request and
ucam_webauth.Response in order to use the Raven URLs and the Raven
response settings (default ptags and signing keys).

	
ucam_webauth.raven.PUBKEY2

	The key used to verify responses, from
https://raven.cam.ac.uk/project/keys/

	
ucam_webauth.raven.RAVEN_AUTH

	The WLS’ authentication start page:
RAVEN_AUTH.format(quoted_query_string) will produce a request

	
ucam_webauth.raven.RAVEN_LOGOUT

	The WLS’ logout page: redirecting to this URL will log the user out of
Raven completely.

	
class ucam_webauth.raven.Request(url, desc=None, aauth=None, iact=None, msg=None, params=None, fail=None, encode_strings=True)

	ucam_webauth.Request, configured for live Raven

Refer to ucam_webauth for documentation.

	
__str__()

	Returns a full URL: the raven authentication url, with the query
string set to contain the request data

	
class ucam_webauth.raven.Response(string)

	ucam_webauth.Response, configured for live Raven

Refer to ucam_webauth for documentation.

	
keys

	A single key; kid ‘2’ maps to PUBKEY2.

	
old_version_ptags = frozenset([u'current'])

	

flask_glue

	
class ucam_webauth.raven.flask_glue.AuthDecorator(desc=None, aauth=None, iact=None, msg=None, max_life=7200, use_wls_life=False, inactive_timeout=None, issue_bounds=(15, 5), require_principal=None, require_ptags=frozenset([u'current']), can_trust_request_host=False)

	ucam_webauth.flask_glue.AuthDecorator, configured for live Raven

Refer to ucam_webauth.flask_glue for documentation.

	
request_class

	alias of ucam_webauth.raven.Request

	
response_class

	alias of ucam_webauth.raven.Response

	
logout_url = u'https://raven.cam.ac.uk/auth/logout.html'

	

demoserver

Raven Demo Server

Provides Request and Response subclasses (as in the raven module), except
these use the settings of the Raven Demo Server,
http://raven.cam.ac.uk/project/test-demo/

	
ucam_webauth.raven.demoserver.PUBKEY901

	The key used to verify responses, from
https://raven.cam.ac.uk/project/keys/demo_server/

	
ucam_webauth.raven.demoserver.RAVEN_DEMO_AUTH

	The WLS’ authentication start page:
RAVEN_DEMO_AUTH.format(quoted_query_string) will produce a request

	
ucam_webauth.raven.demoserver.RAVEN_DEMO_LOGOUT

	The WLS’ logout page: redirecting to this URL will log the user out of
Raven completely.

	
class ucam_webauth.raven.demoserver.Request(url, desc=None, aauth=None, iact=None, msg=None, params=None, fail=None, encode_strings=True)

	ucam_webauth.Request, configured for the Raven demo server

Refer to ucam_webauth for documentation.

	
__str__()

	Returns a full URL: the raven demoserver authentication url, with
the query string set to contain the request data

	
class ucam_webauth.raven.demoserver.Response(string)

	ucam_webauth.Response, configured for the Raven demo server

Refer to ucam_webauth for documentation.

	
keys

	A single key; kid ‘901’ maps to PUBKEY901.

	
old_version_ptags = frozenset([u'current'])

	

 Python Module Index

 u

 		 	

 		
 u	

 	[image: -]
 	
 ucam_webauth	

 	
 	
 ucam_webauth.flask_glue	

 	
 	
 ucam_webauth.raven	

 	
 	
 ucam_webauth.raven.demoserver	

 	
 	
 ucam_webauth.raven.flask_glue	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | V
 | W

_

 	
 	__call__() (ucam_webauth.flask_glue.AuthDecorator method)

 	__str__() (ucam_webauth.raven.demoserver.Request method)

 	(ucam_webauth.Request method)

 	(ucam_webauth.raven.Request method)

A

 	
 	ATYPE_PWD (in module ucam_webauth)

 	auth (ucam_webauth.Response attribute)

 	
 	AuthDecorator (class in ucam_webauth.flask_glue)

 	(class in ucam_webauth.raven.flask_glue)

 	AuthenticationType (class in ucam_webauth)

B

 	
 	before_request() (ucam_webauth.flask_glue.AuthDecorator method)

C

 	
 	check_authorised() (ucam_webauth.flask_glue.AuthDecorator method)

 	
 	check_iact_aauth() (ucam_webauth.Response method)

 	code (ucam_webauth.Status attribute)

D

 	
 	desc (ucam_webauth.Request attribute)

 	
 	description (ucam_webauth.AuthenticationType attribute)

 	(ucam_webauth.Status attribute)

E

 	
 	expires (ucam_webauth.flask_glue.AuthDecorator attribute)

 	
 	expires_all (ucam_webauth.flask_glue.AuthDecorator attribute)

I

 	
 	iact (ucam_webauth.Request attribute)

 	id (ucam_webauth.Response attribute)

 	
 	issue (ucam_webauth.flask_glue.AuthDecorator attribute)

 	(ucam_webauth.Response attribute)

K

 	
 	keys (ucam_webauth.raven.demoserver.Response attribute)

 	(ucam_webauth.Response attribute)

 	(ucam_webauth.raven.Response attribute)

 	
 	kid (ucam_webauth.Response attribute)

L

 	
 	last (ucam_webauth.flask_glue.AuthDecorator attribute)

 	life (ucam_webauth.flask_glue.AuthDecorator attribute)

 	(ucam_webauth.Response attribute)

 	
 	logout() (ucam_webauth.flask_glue.AuthDecorator method)

 	logout_url (ucam_webauth.raven.flask_glue.AuthDecorator attribute)

M

 	
 	msg (ucam_webauth.Request attribute)

 	(ucam_webauth.Response attribute)

N

 	
 	name (ucam_webauth.AuthenticationType attribute)

 	(ucam_webauth.Status attribute)

O

 	
 	old_version_ptags (ucam_webauth.raven.demoserver.Response attribute)

 	(ucam_webauth.Response attribute)

 	(ucam_webauth.raven.Response attribute)

P

 	
 	params (ucam_webauth.Request attribute)

 	(ucam_webauth.Response attribute)

 	principal (ucam_webauth.flask_glue.AuthDecorator attribute)

 	
 	ptags (ucam_webauth.flask_glue.AuthDecorator attribute)

 	(ucam_webauth.Response attribute)

 	PUBKEY2 (in module ucam_webauth.raven)

 	PUBKEY901 (in module ucam_webauth.raven.demoserver)

R

 	
 	RAVEN_AUTH (in module ucam_webauth.raven)

 	RAVEN_DEMO_AUTH (in module ucam_webauth.raven.demoserver)

 	RAVEN_DEMO_LOGOUT (in module ucam_webauth.raven.demoserver)

 	RAVEN_LOGOUT (in module ucam_webauth.raven)

 	Request (class in ucam_webauth)

 	(class in ucam_webauth.raven)

 	(class in ucam_webauth.raven.demoserver)

 	
 	request_class (ucam_webauth.raven.flask_glue.AuthDecorator attribute)

 	Response (class in ucam_webauth)

 	(class in ucam_webauth.raven)

 	(class in ucam_webauth.raven.demoserver)

 	response_class (ucam_webauth.raven.flask_glue.AuthDecorator attribute)

S

 	
 	session_new() (ucam_webauth.flask_glue.AuthDecorator method)

 	signed (ucam_webauth.Response attribute)

 	sso (ucam_webauth.Response attribute)

 	Status (class in ucam_webauth)

 	status (ucam_webauth.Response attribute)

 	STATUS_AUTHENTICATION_DECLINED (in module ucam_webauth)

 	STATUS_BAD_REQUEST (in module ucam_webauth)

 	
 	STATUS_CANCELLED (in module ucam_webauth)

 	STATUS_CODES (in module ucam_webauth)

 	STATUS_INTERACTION_REQUIRED (in module ucam_webauth)

 	STATUS_NOATYPES (in module ucam_webauth)

 	STATUS_SUCCESS (in module ucam_webauth)

 	STATUS_UNSUPPORTED_VERSION (in module ucam_webauth)

 	STATUS_WAA_NOT_AUTHORISED (in module ucam_webauth)

 	success (ucam_webauth.Response attribute)

U

 	
 	ucam_webauth (module)

 	ucam_webauth.flask_glue (module)

 	ucam_webauth.raven (module)

 	
 	ucam_webauth.raven.demoserver (module)

 	ucam_webauth.raven.flask_glue (module)

 	url (ucam_webauth.Response attribute)

V

 	
 	ver (ucam_webauth.Response attribute)

W

 	
 	WAA

 	
 	WLS

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 python-ucam-webauth documentation

 		
 Quickstart

 		
 Using the flask decorator

 		
 Requiring all flask requests be authenticated

 		
 Manual request building and response parsing

 		
 Warning

 		
 Integrating with existing authentication or session management

 		
 Warning

 		
 See also

 		
 Security

 		
 Checking response values

 		
 Using params as a token

 		
 Signing keys

 		
 Misc

 		
 Response URL for “cancels”

 		
 python module documentation

 		
 ucam_webauth

 		
 flask_glue

 		
 ucam_webauth.raven

 		
 flask_glue

 		
 demoserver

_static/up-pressed.png

_static/up.png

